Kids Talk Radio Vietnam

The Occupy Mars Learning Adventure Project


Leave a comment

How can students help Puerto Rico?

We are asking students, teachers and others to send their creative ideas and STEM & STEAM++ projects to help Puerto Rico keep their lights on and their water clean enough to drink.   We invited you to visit our new website and see what we have so far.

Puerto Rico STEM Projects.png

Do what you can to keep the conversations and solutions for Puerto Rico going.

http://www.KidsTalkRadioPuertoRico.WordPress.com

How can you help?

Bob Barboza

Barboza Space Center, Kids Talk Radio Science

Suprschool@aol.com

 

*STEAM++ (science, technology, engineering, visual and performing arts, mathematics, computer languages and foreign languages.

Advertisements


Leave a comment

How can High School Students in Vietnam Help High School Students in Puerto Rico

Kids Talk Radio Science Helping Puerto Rico

We are calling on students from around the world to help other students in Puerto Rico.  We are looking for your creative ideas to make drinking water safe to drink.  We are looking to use solar energy to to create light and to charge cell phones.

What other ideas do you have?

Visit the new Puerto Rico Website today and you will see what we are starting to do to help fellow students on the island.

www.KidsTalkRadioPuertoRico.WordPress.com

main_900-1.jpg

170907-hurricane-irma-puerto-rico-njs-835a_f49999cd27a4f1cfd711bac26c5436cf.nbcnews-ux-2880-1000.jpg

Circuit Visualization.jpg


Leave a comment

International Student Design Contest: Design A Mar’s Lander

giphy.gif

The Mars Society is announcing the international student engineering contest to design a lander capable of delivering a ten metric ton payload safely to the surface of Mars. The competition is open to student teams from around the world. Participants are free to choose any technology to accomplish the proposed mission and need to submit design reports of no more than 50 pages by March 31, 2018.

These contest reports will be evaluated by a panel of judges and will serve as the basis for a down-select to ten finalists who will be invited to present their work in person at the next International Mars Society Convention in September 2018. The first place winning team will receive a trophy and a $10,000 cash prize. Second through fifth place winners will receive trophies and prizes of $5,000, 3,000, $2000, and $1,000 respectively. In honor of the first craft used to deliver astronauts to another world, the contest is being named “Red Eagle.”

Background:

The key missing capability required to send human expeditions to Mars is the ability to land large payloads on the Red Planet. The largest capacity demonstrated landing system is that used by Curiosity, which delivered 1 ton. That is not enough to support human expeditions, whose minimal requirement is a ten ton landing capacity. NASA has identified this as a key obstacle to human missions to Mars, but has no program to develop any such lander. SpaceX had a program, called Red Dragon, which might have created a comparable capability, but it was cancelled when NASA showed no interest in using such a system to soft land crews returning to Earth from the ISS or other near-term missions.

In the absence of such a capability, NASA has been reduced to proposing irrelevant projects, such as building a space station in lunar orbit (not needed for either lunar or Mars expeditions), or claim that it is working on the technology for large visionary interplanetary spaceships which will someday sail from lunar orbit to Mars orbit and back, accomplishing nothing.

For full details about the Red Eagle student engineering contest, including team rules, guidelines and requirements, please click here.


Leave a comment

We need a soil sample from Vietnam

High School students working at the Barboza Space Center are working on growing better plants for Mars.  www.BarbozaSpaceCenter.com

We need a test-tube size sample of soil from your country for experiments we will be conducting in July, 2018 in Los Angeles and Long Beach, California.  We want to collaborate with other high school students from around the world.   Our project is the Occupy Mars Learning Adventures.  

Contact: Bob Barboza at (562) 221-1780 Cell.

Soil Sample Mars Project.jpg

Martian soil

Curiosity‘s view of Martian soil and boulders after crossing the “Dingo Gap” sand dune (February 9, 2014; raw color).

Martian soil is the fine regolith found on the surface of Mars. Its properties can differ significantly from those of terrestrial soil. The term Martian soil typically refers to the finer fraction of regolith. On Earth, the term “soil” usually includes organic content.[1] In contrast, planetary scientists adopt a functional definition of soil to distinguish it from rocks.[2] Rocks generally refer to 10 cm scale and larger materials (e.g., fragments, breccia, and exposed outcrops) with high thermal inertia, with areal fractions consistent with the Viking Infrared Thermal Mapper (IRTM) data, and immobile under current aeolian conditions.[2] Consequently, rocks classify as grains exceeding the size of cobbles on the Wentworth scale.

This approach enables agreement across Martian remote sensing methods that span the electromagnetic spectrum from gamma to radio waves. ‘‘Soil’’ refers to all other, typically unconsolidated, material including those sufficiently fine-grained to be mobilized by wind.[2] Soil consequently encompasses a variety of regolith components identified at landing sites. Typical examples include: bedform armor, clasts, concretions, drift, dust, rocky fragments, and sand. The functional definition reinforces a recently proposed genetic definition of soil on terrestrial bodies (including asteroids and satellites) as an unconsolidated and chemically weathered surficial layer of fine-grained mineral or organic material exceeding centimeter scale thickness, with or without coarse elements and cemented portions.[1]

Martian dust generally connotes even finer materials than Martian soil, the fraction which is less than 30 micrometres in diameter. Disagreement over the significance of soil’s definition arises due to the lack of an integrated concept of soil in the literature. The pragmatic definition “medium for plant growth” has been commonly adopted in the planetary science community but a more complex definition describes soil as “(bio)geochemically/physically altered material at the surface of a planetary body that encompasses surficial extraterrestrial telluric deposits.” This definition emphasizes that soil is a body that retains information about its environmental history and that does not need the presence of life to form.


Leave a comment

How can we grow rice on Mars?

Our Occupy Mars Tiger Team has been invited to write a professional paper on how we plan on growing food faster on the planet Mars.  Who wants the assignment?

3f29d45549f0505efa88cc9cb7ab78ae.jpg

www.KidsTalkRadioScience.com

http://www.OccupyMars.WordPress.com

 

Author Instructions

Plant Direct is a sound science journal for the plant sciences that give prompt and equal consideration to papers reporting work dealing with a variety of subjects. Topics include but are not limited to genetics, biochemistry, development, cell biology, biotic stress, abiotic stress, genomics, phenomics, bioinformatics, physiology, molecular biology, and evolution.

Manuscript Types

Editorial: These manuscripts serve as opinion pieces and are invitation only. Bespoke editorials that are not requested the Editor-in-Chief will not be permitted for peer review.

Original Research Articles: Includes primary research articles, negative reports with justifications, replication studies, and other studies that contribute to the advancement of the field.

Corrigendum: All requests for corrections should first be submitted to the editorial office at plantdirect@wiley.com .There is no publication fee charged for Corrigenda.

All submitted manuscripts will be screened by our CrossCheck similarity software. The journal reserves the right to return any manuscript that is deemed to have too much textual similarity to other published works even if the similar texts are cited properly. In these matters, the journal follows COPE guidelines.

To find out more about CrossCheck visit http://www.crossref.org/crosscheck.html.

Submission requirements

To represent our support of a global identifier and standardization in academic publishing, we require that all authors include a valid ORCID ID and email address during the submission process. Peer review of manuscripts will not commence until this information has been provided for all authors.

There are two ways to add your ORCID ID:1. On the Plant Direct Submission Homepage , click the “Use an Existing ID” to log into your ORCID ID and register it with Plant Direct.2. If you are already logged into the Plant Direct Submission Site, go to the “Modify Profile/Password” link at the bottom of the page underneath General Tasks. On the next page, go to the ORCID field to add the ID.Please Note: The email provided during submission must match the email associated with your ORCID account. If these emails are different, you will not be able to link the two accounts. At this time, each author must add their ORCID information individually. The system does not currently allow author information to be updated on behalf of an author.

Preprint policy

Plant Direct enthusiastically endorses the use of preprint servers. To show our enthusiasm, all manuscripts published using a preprint service before submission to the journal will be eligible for a discount. Please note that proof of prior upload to a preprint server (such as a valid link to the preprint server paper) must be provided during submission in order to qualify for the discount. At this time, we are not able to extend the discount to papers uploaded to a preprint server after the manuscript has already been submitted to Plant Direct.

We encourage authors to upload papers to the BioRxiv (http://biorxiv.org/) preprint server and use the direct submission option to submit their manuscripts to Plant Direct.

At this time, we also extend the APC discount to papers previously uploaded to the preprint servers Arxiv (https://arxiv.org/) and Peerjpreprints (https://peerj.com/about/author-instructions/)

If you have used a different preprint server that is not listed above, please contact the editorial office for guidance.

General Instructions

Manuscripts must be submitted in grammatically correct English. Manuscripts that do not meet this standard cannot be reviewed. Authors for whom English is a second language may wish to consult an English-speaking colleague or consider having their manuscript professionally edited before submission to improve the English. A list of independent suppliers of editing services can be found at http://authorservices.wiley.com/bauthor/english_language.asp. All services are paid for and arranged by the author, and use of one of these services does not guarantee acceptance or preference for publication.

A manuscript is considered for review and possible publication on the condition that it is submitted solely to Plant Direct, and that neither the manuscript nor a substantial portion of it is under consideration elsewhere.

Manuscript Preparation

In order to make the submission process as easy as humanly possible, we place very few restrictions on the way in which you prepare your article and it is not necessary to try to replicate the layout of the journal in your submission. We ask only that you consider your reviewers by ensuring that your manuscript is presented in a clear, generic and readable layout, and that all relevant sections are included. Line numbers are often helpful to reviewers. Fonts and spacing are not mandatory but do remember that the more readable your manuscript, the easier it will be for editors and reviewers to properly evaluate it. Post-acceptance, our production team will ensure that the paper is formatted and designed according to our journal style.

Please use the list below as a checklist to ensure the manuscript has all the information necessary for a successful review:

  • Title page, including title, authors list along with authors’ names, authors’ affiliations, and contact information
  • Abstract and 4–6 keywords
  • Text (introduction, materials and methods, results, discussion)
  • Literature cited (see below for tips on references)
  • Tables (may be sent as a separate file if necessary)
  • Figure legends
  • Acknowledgements, including details of funding bodies with grant numbers

Please keep the following guidelines in mind while preparing your article for Plant Direct:

  • Write for a wide audience of plant biologists.
  • Avoid abbreviations and define those that are necessary on first use.
  • Provide background info in the Introduction.
  • Cite previous publications supporting your work.
  • Cite primary research (not reviews) when possible; note that citation of recent research articles is not a substitute for citing original discoveries.
  • Avoid “data not shown” or “unpublished results” – critical data must be available, or should not be cited.
  • Citation to work “submitted” or “in preparation” is not permitted; all cited work must be on a preprint server, published or accepted and in press.
  • Discussion should not repeat the Results, but explore the implications of the Results.
  • Be concise.

Abstract (Maximum of 500 words)

Briefly describe the manuscript’s purpose, your hypothesis, methods, results and conclusions.

Methods

  • Should be complete enough that other laboratories can replicate results.
  • Standard procedures should be referenced with variations specifically described.
  • Include complete description of experimental design and any statistical methods used.
  • Describe novel DNA constructs, genetic stocks, enzyme preparations, antibodies and other reagents, and analytical software sufficiently to allow their reproduction. Provide any genes or new sequence data discussed in the article. Novel nucleotide and amino acid sequences must be deposited in a public repository such as the GenBank database (http://www.rcsb.org/pdb).
  • The penultimate section should be Accession Numbers. Insert the following and list accession numbers: Sequence data from this article can be found in the EMBL/GenBank data libraries under accession number(s) XX000000 (list the locus identifier or gene model number where applicable, e.g., Arabidopsis AGI locus identifier, maize ZEAMMB73 number, rice OsXXg number, etc.).
  • If a list of accession numbers is in a table or figure, identify which one.
  • Accession numbers for genes must be specific for each gene; accession numbers for BAC clones or chromosomes are not acceptable substitutes.
  • List numbers for any supplemental data placed in a permanent public repository (e.g., GEO http://www.ncbi.nlm.nih.gov/geohttp://www.ebi.ac.uk/arrayexpress, or Protein Data Bank http://www.rcsb.org/pdb).
  • The last section should list all Supplemental Data files (titles only).

Author Contributions and Acknowledgments

Contribution to a manuscript must be substantive to justify authorship. An author is responsible for major aspects of the research presented. The corresponding author is responsible for ensuring that all authors have made bona fide, substantive contributions to the research and have seen and approved the manuscript in final form prior to submission. We recommend the guidelines of the International Committee of Medical Journal Editors (ICMJE) for authorship and contributorship, which stipulates that all those designated as authors should meet all four of the following criteria (http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html):

  1. Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; AND
  2. Drafting the work or revising it critically for important intellectual content; AND
  3. Final approval of the version to be published; AND
  4. Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Each article must include an Author Contributions section (to appear after Acknowledgments) that explains how each author contributed to the research and/or writing of the manuscript. Note which of the following tasks each author performed: designed the research; performed research; contributed new analytic/computational/etc. tools; analyzed data; or wrote the paper. All other contributors should instead be acknowledged appropriately in the Acknowledgments section, and authors should seek written permission to include any individuals mentioned in acknowledgments.

References

Upon first submission, references may be submitted in any standard format (e.g. AMA style).

Figure legends

  • Provide a short title.
  • Describe each panel.
  • Define symbols and abbreviations.
  • Define error bars.
  • Move accession numbers to end of Methods.
  • Separate from the Figures.

Figure preparation

  • Ensure that label text is highly visible and explanatory text only appears in the figure caption/legend.
  • Ensure that all axes and figure elements are well-defined and explained, but avoid unnecessary text.
  • Include (and define) error bars where appropriate.
  • Avoid complex hatched patterns – use simple patterns and color schemes. Make consistent use of color throughout a manuscript (e.g. use the same color or pattern for wild type and different genotypes/treatments in each figure where possible).
  • Ensure that multiple panels in a figure are evenly spaced.

If necessary, we will request higher-quality figures prior to production of proofs. Figures should be conceptual and unambiguous. Guiding principles of good figure preparation are listed below. Click on or follow the “detailed figure guidelines” link below for additional information and examples. See links below on inappropriate figure manipulation and preparing figures for color vision-deficient readers.

Detailed figure guidelines (http://media.wiley.com/assets/7323/92/electronic_artwork_guidelines.pdf)

Figure manipulation

Plant Direct does not allow certain electronic enhancements or manipulations of micrographs, gels, or other digital images using Photoshop or any other software. If multiple images are collected into a single figure, be sure to separate them clearly with lines. If a digital tool is used to adjust contrast, brightness, or color, it must be applied uniformly to an entire image; targeted alteration of only part of an image is prohibited. Plant Direct reserves the right to ask authors to provide supporting data on which figures were based. Please refer to J Cell Biol 158: 1151 (http://www.jcb.org/cgi/content/full/158/7/1151) for guidance on acceptable and unacceptable digital image manipulation.

Preparing figures for color vision-deficient readers

Many readers of the Journal (1 in 12, on average) have some form of color-deficient vision; therefore, when preparing your figures, please observe the following guidelines to ensure that all readers will be able to comprehend your data.

  • In fluorescent double-staining micrographs and DNA chips, do not use the combination of red and green; use magenta and green instead.
  • For micrographs with triple or more channels, additionally show either grayscale image of each channel or the combination of the two most important channels in magenta and green.
  • For graphs and line drawings, label elements on the graph itself rather than making a separate color-coded key. Do not try to convey information in color only, but use BOTH color and shape (solid and dotted lines, different symbols, various hatchings, etc.).
  • For more information, see the following web site: http://jfly.iam.u-tokyo.ac.jp/color/

Supplemental materials

Data and methods that are integral to the main conclusions of the article must be presented in the main manuscript; for example, it is not acceptable to put critical results or methods into supplemental materials in an attempt to shorten the main text. Supplemental figures and tables should be prepared to the same standards of quality and visual appeal as regular manuscript figures and tables, with all data and elements of the figures clearly defined and fully explained. Manuscripts that have been accepted or for which revision has been requested should follow the guidelines below for preparation of Supplemental Figures, Tables, and Data Sets.

  • Combine multiple supplemental figures and tables into a single PDF (10 MB max).
  • Include a title and complete legend for each item.
  • Briefly refer to each item in Results or Methods (e.g., Supplemental Figure 1).
  • List the titles of each piece of material at the end of your Methods.

Detailed Supplemental Data Guidelines

What constitutes supplemental material?

  • Large-scale data sets and other data that is impractical to include in the main manuscript.
  • Detailed experimental protocols or additional supporting data that would be of interest only to specialists.

Large-scale data sets

Large-scale data sets (e.g., complete or draft genome sequences, genome annotations, genetic maps, EST data sets, transcript profiles, proteomic data sets, metabolic profiles, next-gen sequencing data and plant phenotyping image datasets) that are integral to the manuscript must be provided at time of manuscript submission. These include data from small RNA, mRNA, specialized RNA libraries, ChIP-seq, whole-genome re-sequencing or genotyping, whole-genome bisulfite sequencing, etc.

At the time of publication, these large-scale data sets must be available to readers in a permanent public repository with open access (e.g., GEO http://www.ncbi.nlm.nih.gov/geo, Array-Express http://www.ebi.ac.uk/arrayexpress, NCBI’s Short Read Archive sequence database; the microRNA database http://www.mirbase.org/ or a general purpose data repository such as Zenodo) as they will not be stored at Plant Direct permanently, only during the review process if necessary. Full data sets must be released, even if only a subset of the data was selected for use in the analysis. Image datasets should be provided with the corresponding extracted data (e.g. as a .csv file). Non-permanent URLs may be provided additionally at the option of authors as a means to enable readers to access or query information more conveniently. Non-permanent URLs may also be provided for software and unusual file types requiring special software downloads or those that are not compatible with Plant Direct website. The Methods section should also contain the following information: algorithms and parameters used in assembly of genomic data; description of procedures for normalization for measurements of transcript abundances; mismatch parameters for genome-matched reads for all libraries; library adapter sequences.

In general, large-scale data sets must be complete (e.g., must include the complete set of genome sequences analyzed, ESTs identified, genes queried in transcript profiling, peptides identified, molecules identified, etc.). When appropriate and suitably sized, these should be provided in comma separated value (csv) format for publication on Plant Direct site (not as PDF files); otherwise they should be made available via public databases. Data supporting transcript profiling experiments must include complete sequence information (e.g., accession numbers, any relevant annotation data, and in the case of Arabidopsis, TAIR locus identifiers [http://www.arabidopsis.org/]). Authors are encouraged to follow the MIAME (Minimal Information for a Microarray Experiment) standards for microarray analyses http://www.clinchem.org/content/55/4/611. For plant phenotyping datasets, authors are encouraged to follow the MIAPPE (Minimum Information about Plant Phenotyping Experiment) standards (http://cropnet.pl/phenotypes/?page_id=15).

Genome sequencing

The entire raw sequence data on which the genome is based, the final assembled version, and the complete annotation (insofar as possible) of the assembled genome must be available at a public repository at the time of publication. Typical files available for download would include, for example, the genome sequences (contigs or pseudomolecules as FASTA files), a GFF or GTF file describing the gene models, together with cDNA, CDS, and protein sequences as FASTA files. Depending on the focus of the work, information about contig scaffolding and additional annotated features such as transposable elements, miRNAs and ncRNAs may be required.

Peer review

Members of the editorial board will evaluate all manuscripts upon submission to determine whether they are appropriate for evaluation by external expert reviewers.

At submission, authors are required to suggest a minimum of two reviewers. All reviewers will be vetted for legitimacy but authors should take care not to suggest people who have a conflict of interest as defined by the ASPB policy (http://aspb.org/publications/aspb-journals/policies-procedures/).

While authors’ suggested reviewers may be considered, Plant Direct editors are permitted to use any reviewer reasonably believed to be an appropriate scientific expert, except reviewers who would be excluded by ASPB’s conflict of interest policy.

If authors wish to request the exclusion of certain reviewers for other reasons, specific justification must be provided; such requests may be considered at the discretion of the editor.

Publication process

After the review, authors will receive one of the following decisions regarding their paper:

Accept: Paper is deemed suitable for publication. Publication is dependent on receipt of any final changes/proofs and payments.

Revision Requested: Some experimentation and/or revision is required

Reject: In light of the reviewers’ and editors’ comments and evaluations, the manuscript does not meet the standards for publication in Plant Direct. Decline to further consider: Our editors find this paper too far outside of their area of expertise to properly evaluate and manage. We are withdrawing this paper from consideration and returning it to the authors in a timely manner so as not to affect or delay the chances of publishing it elsewhere.

Turnaround Times

Decisions will be made as rapidly as possible. If our editors feel the paper is too far outside of their area for them to properly evaluate, the manuscript will be returned to the authors with a “Decline to Further Consider” decision within three weeks.

If revision is requested, the editorial board will evaluate revised manuscripts and determine whether outside review is required. Plant Direct strongly encourages authors to first deposit manuscripts to preprint servers so that any peer-review delays have no effect on the scientific community’s ability to access the science.

The board will strive to render a decision after only one revision. Requested revisions must be submitted within 2 months unless an extension is granted.

If the authors choose to resubmit a declined manuscript after completing additional experiments, the resubmitted version will be treated as a new manuscript and subject to the full review process.

Accepted articles are published online within five working days, provided payment and the return of final proof files.

Article Publication Charges

All articles published by Plant Direct are fully open access: immediately freely available to read, download and share, and enjoy the benefits of a CC-By license (https://creativecommons.org/licenses/by/3.0/). To cover the cost of publishing, Plant Direct requires the payment of an Article Publication Charge or APC. Current members of the ASPB and/or the SEB are afforded a discount.

Direct submissions to the Journal from non-society members who do not upload to an approved preprint service prior to submission – $2,200

Direct submissions to the Journal from non-society members who do upload an approved preprint service prior to submission – $1,980

Direct submissions to the Journal from current society members who do not upload to an approved preprint service prior to submission – $1,760

Direct submissions to the Journal from current society members who do upload to an approved preprint service prior to submission – $1,650

Submissions transferred to the Journal from the Supporting Journals that do not upload to an approved preprint service prior to submission – $1,760

Submissions transferred to the Journal from the Supporting Journals that do upload to an approved preprint service prior to submission – $1,650

Appeal Policy

All decision appeals should be formally submitted to the editorial office at PlantDirect@wiley.com. Please be sure to include the manuscript ID number, original decision letter, and basis for appeal.

Contact Any other questions or concerns may be sent to the editorial office at PlantDirect@wiley.com.

Please press HOME to continue.


Leave a comment

Studying About Geology on Mars in the USA

El Morro National Monument

Barboza Space Center News:   We have just returned from our summer New Mexico geology field trip. We are always looking to compare and contract Earth and Mars. We invite you to visit our most recent photo essay below.   In addition, we are paving the way for our 2018 Barboza Space Center Tiger Teams from Australia, South Korea and Cabo Verde.  We visited the El Malpas National Monument to continue our studies of volcanoes in New Mexico and Cabo Verde.    Plans are underway to study Mars from New Mexico. You can follow our programs by visiting www.BarbozaSpaceCenter.com

IMG_1728.JPG
Photo Essay: Bob Barboza July, 2017, New Mexico
IMG_1739.JPGIMG_1752.JPGIMG_1738.JPGIMG_8189.jpgIMG_1754.JPG
 
El Morro National Monument
IUCN category V (protected landscape/seascape)
El morro view.JPG
Location Cibola County, New Mexico, USA
Nearest city El Morro, New Mexico
Coordinates 35°2′18″N 108°21′12″WCoordinates: 35°2′18″N 108°21′12″W
Area 1,278.72 acres (5.1748 km2)
1,039.92 acres (420.84 ha) federal
Created December 8, 1906
Visitors 59,422 (in 2016)[1]
Governing body National Park Service
Website El Morro National Monument
El Morro National Monument
El Morro National Monument is located in New Mexico

El Morro National Monument

Show map of New MexicoShow map of the USShow all

Area 221 acres (89 ha)
Built 1605
NRHP Reference # 66000043[2]
NMSRCP # 59
Significant dates
Added to NRHP October 15, 1966
Designated NMSRCP May 21, 1971

El Morro National Monument is located on an ancient east-west trail in western New Mexico. The main feature of this National Monument is a great sandstone promontory with a pool of water at its base.

As a shaded oasis in the western U.S. desert, this site has seen many centuries of travelers. The remains of a mesa top pueblo are atop the promontory where between about 1275 to 1350 AD, up to 1500 people lived in this 875 room pueblo. The Spaniard explorers called it El Morro (The Headland). The Zuni Indians call it “A’ts’ina” (Place of writings on the rock). Anglo-Americans called it Inscription Rock. Travelers left signatures, names, dates, and stories of their treks. While some of the inscriptions are fading, there are still many that can be seen today, some dating to the 17th century. Among the Anglo-American emigrants who left their names there in 1858 were several members of the Rose-Baley Party, including Leonard Rose and John Udell.[3] Some petroglyphs and carvings were made by the Ancestral Puebloan centuries before Europeans started making their mark. In 1906, U.S. federal law prohibited further carving.

The many inscriptions, water pool, pueblo ruins, and top of the promontory are all accessible via park trails.

It is on the Trails of the Ancients Byway, one of the designated New Mexico Scenic Byways.[4]


Leave a comment

International Art Contest

Mars Society to Hold Int’l Student Mars Art Contest
Two Weeks Remaining until Submission Deadline (May 31)
The Mars Society is sponsoring a Student Mars Art (SMArt) Contest, inviting youth from around the world to depict the human future on the planet Mars. Young artists from grades 4 through 12 are invited to submit up to three works of art each, illustrating any part of the human future on the Red Planet, including the first landing, human field exploration, operations at an early Mars base, the building of the first Martian cities, terraforming the Red Planet and other related human settlement concepts.

The SMArt Contest will be divided into three categories: Upper Elementary (grades 4-6), Junior High (grades 7-9), and High School (Grades 10-12). Cash prizes of $1,000, $500 and $250, as well as trophies, will be given out to the first, second and third place winners of each section. There will also be certificates of honorable mention for those artists who don’t finish in the top three, but whose work is nevertheless judged to be particularly meritorious.

The winning works of art will be posted on the Mars Society web site and may also be published as part of a special book about Mars art. In addition, winners will be invited to come to the 20th Annual International Mars Society Convention at the University of California, Irvine September 7-10, 2017 to display and talk about their art.

Mars art will consist of still images, which may be composed by traditional methods, such as pencil, charcoal, watercolors or paint, or by computerized means. Works of art must be submitted via a special online form (http://nextgen.marssociety.org/mars-art) in either PDF or JPEG format with a 10 MB limit per image. The deadline for submissions is May 31, 2017, 5:00 pm MST. By submitting art to the contest, participating students grant the Mars Society non-exclusive rights to publish the images on its web site or in Kindle paper book form.

Speaking about the SMArt Contest, Mars Society President Dr. Robert Zubrin said, “The imagination of youth looks to the future. By holding the SMArt Contest, we are inviting young people from all over the world to use art to make visible the things they can see with their minds that the rest of us have yet to see with our own eyes. Show us the future, kids. From imagination comes reality. If we can see it, we can make it.”

All questions about the Mars Society’s SMArt Contest can be submitted to: Marsart@marssociety.org.