Kids Talk Radio Vietnam

The Occupy Mars Learning Adventure Project

Leave a comment

International Student Design Contest: Design A Mar’s Lander


The Mars Society is announcing the international student engineering contest to design a lander capable of delivering a ten metric ton payload safely to the surface of Mars. The competition is open to student teams from around the world. Participants are free to choose any technology to accomplish the proposed mission and need to submit design reports of no more than 50 pages by March 31, 2018.

These contest reports will be evaluated by a panel of judges and will serve as the basis for a down-select to ten finalists who will be invited to present their work in person at the next International Mars Society Convention in September 2018. The first place winning team will receive a trophy and a $10,000 cash prize. Second through fifth place winners will receive trophies and prizes of $5,000, 3,000, $2000, and $1,000 respectively. In honor of the first craft used to deliver astronauts to another world, the contest is being named “Red Eagle.”


The key missing capability required to send human expeditions to Mars is the ability to land large payloads on the Red Planet. The largest capacity demonstrated landing system is that used by Curiosity, which delivered 1 ton. That is not enough to support human expeditions, whose minimal requirement is a ten ton landing capacity. NASA has identified this as a key obstacle to human missions to Mars, but has no program to develop any such lander. SpaceX had a program, called Red Dragon, which might have created a comparable capability, but it was cancelled when NASA showed no interest in using such a system to soft land crews returning to Earth from the ISS or other near-term missions.

In the absence of such a capability, NASA has been reduced to proposing irrelevant projects, such as building a space station in lunar orbit (not needed for either lunar or Mars expeditions), or claim that it is working on the technology for large visionary interplanetary spaceships which will someday sail from lunar orbit to Mars orbit and back, accomplishing nothing.

For full details about the Red Eagle student engineering contest, including team rules, guidelines and requirements, please click here.


Leave a comment

We need a soil sample from Vietnam

High School students working at the Barboza Space Center are working on growing better plants for Mars.

We need a test-tube size sample of soil from your country for experiments we will be conducting in July, 2018 in Los Angeles and Long Beach, California.  We want to collaborate with other high school students from around the world.   Our project is the Occupy Mars Learning Adventures.  

Contact: Bob Barboza at (562) 221-1780 Cell.

Soil Sample Mars Project.jpg

Martian soil

Curiosity‘s view of Martian soil and boulders after crossing the “Dingo Gap” sand dune (February 9, 2014; raw color).

Martian soil is the fine regolith found on the surface of Mars. Its properties can differ significantly from those of terrestrial soil. The term Martian soil typically refers to the finer fraction of regolith. On Earth, the term “soil” usually includes organic content.[1] In contrast, planetary scientists adopt a functional definition of soil to distinguish it from rocks.[2] Rocks generally refer to 10 cm scale and larger materials (e.g., fragments, breccia, and exposed outcrops) with high thermal inertia, with areal fractions consistent with the Viking Infrared Thermal Mapper (IRTM) data, and immobile under current aeolian conditions.[2] Consequently, rocks classify as grains exceeding the size of cobbles on the Wentworth scale.

This approach enables agreement across Martian remote sensing methods that span the electromagnetic spectrum from gamma to radio waves. ‘‘Soil’’ refers to all other, typically unconsolidated, material including those sufficiently fine-grained to be mobilized by wind.[2] Soil consequently encompasses a variety of regolith components identified at landing sites. Typical examples include: bedform armor, clasts, concretions, drift, dust, rocky fragments, and sand. The functional definition reinforces a recently proposed genetic definition of soil on terrestrial bodies (including asteroids and satellites) as an unconsolidated and chemically weathered surficial layer of fine-grained mineral or organic material exceeding centimeter scale thickness, with or without coarse elements and cemented portions.[1]

Martian dust generally connotes even finer materials than Martian soil, the fraction which is less than 30 micrometres in diameter. Disagreement over the significance of soil’s definition arises due to the lack of an integrated concept of soil in the literature. The pragmatic definition “medium for plant growth” has been commonly adopted in the planetary science community but a more complex definition describes soil as “(bio)geochemically/physically altered material at the surface of a planetary body that encompasses surficial extraterrestrial telluric deposits.” This definition emphasizes that soil is a body that retains information about its environmental history and that does not need the presence of life to form.